What is a Coupling Capacitor ???

What is a Coupling Capacitor?

Coupling Capacitor


Use of Coupling Capacitors
A coupling capacitor is a capacitor which is used to couple or link together only the AC signal from one circuit element to another. The capacitor blocks the DC signal from entering the second element and, thus, only passes the AC signal.
Coupling capacitors are useful in many types of circuits where AC signals are the desired signals to be output while DC signals are just used for providing power to certain components in the circuit but should not appear in the output.
For example, a coupling capacitor normally is used in an audio circuits, such as a microphone circuit. DC power is used to give power to parts of the circuit, such as the microphone, which needs DC power to operate. So DC signals must be present in the circuit for powering purposes. However, when a user talks into the microphone, the speech is an AC signal, and this AC signal is the only signal in the end we want passed out. When we pass the AC signals from the microphone onto the output device, say, speakers to be played or a computer to be recorded, we don't want to pass the DC signal; remember, the DC signal was only to power parts of the circuit. We don't want it showing up on the output recording. On the output, we only want the AC speech signal. So to make sure only the AC passes while the DC signal is blocked, we place a coupling capacitor in the circuit.

How to Place a Coupling Capacitor in a Cirucit

In order to place a capacitor in a circuit for AC coupling, the capacitor is connected in series with the load to be coupled.

Capacitor in series for coupling
A capacitor is able to block low frequencies, such as DC, and pass high frequencies, such as AC, because it is a reactive device. It responds to different frequencies in different ways. To low frequency signals, it has a very high impedance, or resistance, so low frequency signals are blocked from going through. To high frequency signals, it has a low impedance or resistance, so high frequency signals are passed through easily.