Example:
1:
A 3 Phase, 5 kW Induction Motor
has a P.F (Power factor) of 0.75 lagging. What size of Capacitor in kVAR is
required to improve the P.F (Power Factor) to 0.90?
Motor input = P = 5 kW
Original P.F = Cosθ1 = 0.75
Final P.F = Cosθ2 = 0.90
θ1 = Cos-1 = (0.75) = 41°.41; Tan θ1 = Tan (41°.41) = 0.8819
θ2 = Cos-1 = (0.90) = 25°.84; Tan θ2 = Tan (25°.50) = 0.4843
Required Capacitor kVAR to
improve P.F from 0.75 to 0.90
Required Capacitor kVAR = P
(Tan θ1 – Tan θ2)
= 5kW (0.8819 – 0.4843)
= 1.99 kVAR
And Rating of Capacitors
connected in each Phase
1.99/3 = 0.663 kVAR
***********************************************************************
Example:
2:
An Alternator is supplying a
load of 650 kW at a P.F (Power factor) of 0.65. What size of Capacitor in kVAR
is required to raise the P.F (Power Factor) to unity (1)? And how many more kW
can the alternator supply for the same kVA loading when P.F improved.
Supplying kW = 650 kW
Original P.F = Cosθ1 = 0.65
Final P.F = Cosθ2 = 1
θ1 = Cos-1 = (0.65) = 49°.45; Tan θ1 = Tan (41°.24) = 1.169
θ2 = Cos-1 = (1) = 0°; Tan θ2 = Tan (0°) = 0
Required Capacitor kVAR to
improve P.F from 0.75 to 0.90
Required Capacitor kVAR = P
(Tan θ1 – Tan θ2)
= 650kW (1.169– 0)
= 759.85 kVAR
***********************************************************************
How to Calculate the Required Capacitor bank value in both kVAR andFarads?
(How to Convert Farads into kVAR and Vice Versa)
Example:
3
A Single phase 400V, 50Hz,
motor takes a supply current of 50A at a P.F (Power factor) of 0.6. The motor
power factor has to be improved to 0.9 by connecting a capacitor in parallel
with it. Calculate the required capacity of Capacitor in both kVAR and Farads.
Motor Input = P = V x I x Cosθ
= 400V x 50A x 0.6
= 12kW
Actual P.F = Cosθ1 = 0..6
Required P.F = Cosθ2 = 0.90
θ1 = Cos-1 = (0.60) = 53°.13; Tan θ1 = Tan (53°.13) = 1.3333
θ2 = Cos-1 = (0.90) = 25°.84; Tan θ2 = Tan (25°.50) = 0.4843
Required Capacitor kVAR to
improve P.F from 0.60 to 0.90
Required Capacitor kVAR = P
(Tan θ1 – Tan θ2)
= 5kW (1.3333– 0.4843)
= 10.188 kVAR
*****************************************************************************
To find the required capacity
of Capacitance in Faradsto improve P.F from 0.6 to 0.9
(Two Methods)
Solution
#1 (Using a Simple Formula)
We have already calculated the
required Capacity of Capacitor in kVAR, so we can easily convert it into Farads
by using this simple formula
Required Capacity of Capacitor
in Farads/Microfarads
C = kVAR / (2 π f V2)
in microfarad
Putting the Values in the above
formula
= (10.188kVAR) / (2 x π x
50 x 4002)
= 2.0268 x 10-4
= 202.7 x 10-6
= 202.7μF
Solution
# 2 (Simple Calculation Method)
kVAR = 10.188 … (i)
We know that;
IC = V/ XC
Whereas XC = 1 / 2 π F C
IC = V / (1 / 2 π F C)
IC = V 2 F C
= (400) x 2π x (50) x C
IC = 125663.7 x C
And,
kVAR = (V x IC) /
1000 … [kVAR =( V x I)/ 1000 ]
= 400 x 125663.7 x C
IC = 50265.48 x C … (ii)
Equating Equation (i) &
(ii), we get,
50265.48 x C = 10.188C
C = 10.188 / 50265.48
C = 2.0268 x 10-4
C = 202.7 x 10-6
C = 202.7μF
****************************************************************************
Example
4 :
What value of Capacitance must
be connected in parallel with a load drawing 1kW at 70% lagging power factor
from a 208V, 60Hz Source in order to raise the overall power factor to 91%.
Solution:
You can use either Table method
or Simple Calculation method to find the required value of Capacitance in
Farads or kVAR to improve Power factor from 0.71 to 0.97. So I used table
method in this case.
P = 1000W
Actual Power factor = Cosθ1 = 0.71
Desired Power factor = Cosθ2 = 0.97
From Table, Multiplier to
improve PF from 0.71 to 0.97 is 0.783
Required Capacitor kVAR to
improve P.F from 0.71 to 0.97
Required Capacitor kVAR = kW x
Table Multiplier of 0.71 and 0.97
= 1kW x 0.783
=783 VAR (required Capacitance Value in
kVAR)
Current in the Capacitor =
IC = QC / V
= 783 / 208
= 3.76A
And
XC = V / IC
= 208 / 3.76 = 55.25Ω
C = 1/ (2 π f XC)
C = 1 (2 π x 60 x 55.25)
C = 48 μF (required Capacitance Value in Farads)
Good
to Know:
Important formulas which is
used for Power factor improvement calculation as well as used in the above
calculation
Power in Watts
kW = kVA x Cosθ
kW = HP x 0.746 or (HP x 0.746)
/ Efficiency … (HP = Motor Power)
kW = √ ( kVA2– kVAR2)
kW = P = VI Cosθ … (Single Phase)
kW = P =√3x V x I Cosθ … (Three Phase)
Apparent Power in VA
kVA= √(kW2+ kVAR2)
kVA = kW/ Cosθ
Reactive Power in VA
kVAR= √(kVA2– kW2)
kVAR = C x (2 π f V2)
Power factor (from 0.1 to 1)
Power Factor = Cosθ = P / V I … (Single Phase)
Power Factor = Cosθ = P / V I … (Single Phase)
Power Factor = Cosθ = P / (√3x V x I) … (Three Phase)
Power Factor = Cosθ = kW / kVA … (Both Single Phase & Three Phase)
Power Factor = Cosθ = R/Z … (Resistance / Impedance)
Power Factor = Cosθ = kW / kVA … (Both Single Phase & Three Phase)
Power Factor = Cosθ = R/Z … (Resistance / Impedance)
XC = 1/ (2 π f C) … (XC = Capacitive reactance)
IC = V/ XC … (I = V / R)
Required Capacity of Capacitor
in Farads/Microfarads
C = kVAR / (2 π f V2) in microfarad
Required Capacity of Capacitor
in kVAR
kVAR = C x (2 π f V2)
*****************************************************************************
*****************************************************************************
Example
5 :
§ Calculate
Size of Capacitor Bank Annual Saving in Bills and Payback Period for Capacitor
Bank.
§ Electrical
Load of (1) 2 No’s of 18.5KW,415V motor ,90% efficiency,0.82 Power Factor ,(2)
2 No’s of 7.5KW,415V motor ,90% efficiency,0.82 Power Factor,(3) 10KW ,415V
Lighting Load. The Targeted Power Factor for System is 0.98.
§ Electrical
Load is connected 24 Hours, Electricity Charge is 100Rs/KVA and 10Rs/KW.
§ Calculate
size of Discharge Resistor for discharging of capacitor Bank. Discharge rate of
Capacitor is 50v in less than 1 minute.
§ Also
Calculate reduction in KVAR rating of Capacitor if Capacitor Bank is operated
at frequency of 40Hz instead of 50Hz and If Operating Voltage 400V instead of
415V.
§ Capacitor
is connected in star Connection, Capacitor voltage 415V, Capacitor Cost is
60Rs/Kvar. Annual Deprecation Cost of Capacitor is 12%.
Calculation:
For Connection (1):
§ Total Load
KW for Connection(1) =Kw / Efficiency=(18.5×2) / 90%=41.1KW
§ Total Load
KVA (old) for Connection(1)= KW /Old Power Factor= 41.1 /0.82=50.1 KVA
§ Total Load
KVA (new) for Connection(1)= KW /New Power Factor= 41.1 /0.98= 41.9KVA
§ Total Load
KVAR= KWX([(√1-(old p.f)2) / old p.f]- [(√1-(New p.f)2) / New p.f])
§ Total Load
KVAR1=41.1x([(√1-(0.82)2) / 0.82]- [(√1-(0.98)2) / 0.98])
§ Total
Load KVAR1=20.35 KVAR
§ OR
§ tanǾ1=Arcos(0.82)=0.69
§ tanǾ2=Arcos(0.98)=0.20
§ Total Load
KVAR1= KWX (tanǾ1- tanǾ2) =41.1(0.69-0.20)=20.35KVAR
For Connection (2):
§ Total Load
KW for Connection(2) =Kw / Efficiency=(7.5×2) / 90%=16.66KW
§ Total Load
KVA (old) for Connection(1)= KW /Old Power Factor= 16.66 /0.83=20.08 KVA
§ Total Load
KVA (new) for Connection(1)= KW /New Power Factor= 16.66 /0.98= 17.01KVA
§ Total Load
KVAR2= KWX([(√1-(old p.f)2) / old p.f]- [(√1-(New p.f)2) / New p.f])
§ Total Load
KVAR2=20.35x([(√1-(0.83)2) / 0.83]- [(√1-(0.98)2) / 0.98])
§ Total
Load KVAR2=7.82 KVAR
For Connection (3):
§ Total Load
KW for Connection(3) =Kw =10KW
§ Total Load
KVA (old) for Connection(1)= KW /Old Power Factor= 10/0.85=11.76 KVA
§ Total Load
KVA (new) for Connection(1)= KW /New Power Factor= 10 /0.98= 10.20KVA
§ Total Load
KVAR3= KWX([(√1-(old p.f)2) / old p.f]- [(√1-(New p.f)2) / New p.f])
§ Total Load
KVAR3=20.35x([(√1-(0.85)2) / 0.85]- [(√1-(0.98)2) / 0.98])
§ Total
Load KVAR1=4.17 KVAR
§ Total
KVAR=KVAR1+ KVAR2+KVAR3
§ Total
KVAR=20.35+7.82+4.17
§ Total
KVAR=32 Kvar
*****************************************************************************
Size of Capacitor Bank:
§ Site
of Capacitor Bank=32 Kvar.
§ Leading
KVAR supplied by each Phase= Kvar/No of Phase
§ Leading
KVAR supplied by each Phase =32/3=10.8Kvar/Phase
§ Capacitor
Charging Current (Ic)= (Kvar/Phase x1000)/Volt
§ Capacitor
Charging Current (Ic)= (10.8×1000)/(415/√3)
§ Capacitor
Charging Current (Ic)=44.9Amp
§ Capacitance
of Capacitor = Capacitor Charging Current (Ic)/ Xc
§ Xc=2 x 3.14
x f x v=2×3.14x50x(415/√3)=75362
§ Capacitance
of Capacitor=44.9/75362= 5.96µF
§ Required
3 No’s of 10.8 Kvar Capacitors and
§ Total
Size of Capacitor Bank is 32Kvar
*****************************************************************************
Protection of
Capacitor Bank:
Size of HRC Fuse for
Capacitor Bank Protection
§ Size
of the fuse =165% to 200% of Capacitor Charging current.
§ Size of the
fuse=2×44.9Amp
§ Size of the
fuse=90Amp
*****************************************************************************
Size of Circuit Breaker
for Capacitor Protection:
§ Size
of the Circuit Breaker =135% to 150% of Capacitor Charging current.
§ Size of the
Circuit Breaker=1.5×44.9Amp
§ Size of the
Circuit Breaker=67Amp
§ Thermal
relay setting between 1.3 and 1.5of Capacitor Charging current.
§ Thermal
relay setting of C.B=1.5×44.9 Amp
§ Thermal
relay setting of C.B=67 Amp
§ Magnetic
relay setting between 5 and 10 of Capacitor Charging current.
§ Magnetic
relay setting of C.B=10×44.9Amp
§ Magnetic
relay setting of C.B=449Amp
*****************************************************************************
Sizing of cables for
capacitor Connection:
§ Capacitors
can withstand a permanent over current of 30% +tolerance of 10% on capacitor
Current.
§ Cables size
for Capacitor Connection= 1.3 x1.1 x nominal capacitor Current
§ Cables
size for Capacitor Connection = 1.43 x nominal capacitor Current
§ Cables size
for Capacitor Connection=1.43×44.9Amp
§ Cables size
for Capacitor Connection=64 Amps
*****************************************************************************
Maximum size of discharge
Resistor for Capacitor:
§ Capacitors
will be discharge by discharging resistors.
§ After the
capacitor is disconnected from the source of supply, discharge resistors are
required for discharging each unit within 3 min to 75 V or less from initial
nominal peak voltage (according IEC-standard 60831).
§ Discharge
resistors have to be connected directly to the capacitors. There shall be no
switch, fuse cut-out or any other isolating device between the capacitor unit
and the discharge resistors.
§ Max.
Discharge resistance Value (Star Connection) = Ct / Cn x Log (Un x√2/ Dv).
§ Max.
Discharge resistance Value (Delta Connection)= Ct / 1/3xCn x Log (Un x√2/ Dv)
§ Where Ct
=Capacitor Discharge Time (sec)
§ Cn=Capacitance
Farad.
§ Un = Line
Voltage
§ Dv=Capacitor
Discharge voltage.
§ Maximum
Discharge resistance =60 / ((5.96/1000000)x log ( 415x√2 /50)
§ Maximum
Discharge resistance=4087 KΩ
*****************************************************************************
Effect of Decreasing
Voltage & Frequency on Rating of Capacitor:
§ The
kvar of capacitor will not be same if voltage applied to the capacitor and
frequency changes
§ Reduced in
Kvar size of Capacitor when operating 50 Hz unit at 40 Hz
§ Actual KVAR
= Rated KVAR x(Operating Frequency / Rated Frequency)
§ Actual KVAR
= Rated KVAR x(40/50)
§ Actual KVAR
= 80% of Rated KVAR
§ Hence 32
Kvar Capacitor works as 80%x32Kvar= 26.6Kvar
§ Reduced in
Kvar size of Capacitor when operating 415V unit at 400V
§ Actual KVAR
= Rated KVAR x(Operating voltage / Rated voltage)^2
§ Actual KVAR
= Rated KVAR x(400/415)^2
§ Actual
KVAR=93% of Rated KVAR
§ Hence 32
Kvar Capacitor works as 93%x32Kvar= 23.0Kvar
*****************************************************************************
Annual Saving and Pay Back
Period
Before Power Factor Correction:
§ Total
electrical load KVA (old)= KVA1+KVA2+KVA3
§ Total
electrical load= 50.1+20.08+11.76
§ Total
electrical load=82 KVA
§ Total
electrical Load KW=kW1+KW2+KW3
§ Total electrical
Load KW=37+15+10
§ Total
electrical Load KW =62kw
§ Load
Current=KVA/V=80×1000/(415/1.732)
§ Load
Current=114.1 Amp
§ KVA Demand
Charge=KVA X Charge
§ KVA Demand
Charge=82x60Rs
§ KVA Demand
Charge=8198 Rs
§ Annual Unit
Consumption=KWx Daily usesx365
§ Annual Unit
Consumption=62x24x365 =543120 Kwh
§ Annual
charges =543120×10=5431200 Rs
§ Total
Annual Cost= 8198+5431200
§ Total
Annual Cost before Power Factor Correction= 5439398 Rs
*************************************************************************
-->
After Power Factor
Correction:
§ Total
electrical load KVA (new)= KVA1+KVA2+KVA3
§ Total
electrical load= 41.95+17.01+10.20
§ Total
electrical load=69 KVA
§ Total
electrical Load KW=kW1+KW2+KW3
§ Total
electrical Load KW=37+15+10
§ Total
electrical Load KW =62kw
§ Load
Current=KVA/V=69×1000/(415/1.732)
§ Load
Current=96.2 Amp
§ KVA Demand
Charge=KVA X Charge
§ KVA Demand
Charge=69x60Rs =6916 Rs————-(1)
§ Annual Unit
Consumption=KWx Daily usesx365
§ Annual Unit
Consumption=62x24x365 =543120 Kwh
§ Annual
charges =543120×10=5431200 Rs—————–(2)
§ Capital
Cost of capacitor= Kvar x Capacitor cost/Kvar = 82 x 60= 4919 Rs—(3)
§ Annual
Interest and Deprecation Cost =4919 x 12%=590 Rs—–(4)
§ Total
Annual Cost= 6916+5431200+4919+590
§ Total
Annual Cost After Power Factor Correction =5438706 Rs
***********************************************************************
Pay Back Period:
§ Total
Annual Cost After Power Factor Correction =5438706 Rs
§ Annual
Saving= 5439398-5438706 Rs
§ Annual
Saving= 692 Rs
§ Payback
Period= Capital Cost of Capacitor / Annual Saving
§ Payback
Period= 4912 / 692
§ Payback
Period = 7.1 Years
You may also see...
- Why is electrical power transmitted at low frequencies and not at high frequencies..???
- Why do we hear a hissing noise while passing a high voltage line...???
- Introduction to Conductors and their types...
- Formulas for electrical engineers...
- What are the Causes of Poor Power Factor ???
- What is True, Reactive, and Apparent power ... Power Triangle ..???
- Why Power Transmission Cables & Lines are Loose on Electric Poles & Transmission Towers...???